STEM Success Center

Standard Deviation and Difference in Means

Standard Deviation:

- The measurement of the amount of variation or dispersion of a value set
- If standard deviation is low the value is close to the mean
- If standard deviation is high the values are spread out

$$
\text { SD (population) }=\sqrt{\frac{\Sigma|x-\mu|^{\wedge} 2}{N}} \text { SD (sample) }=\sqrt{\frac{\Sigma|x-\bar{x}|^{\wedge} 2}{n-1}}
$$

Steps for Computing Standard Deviation:

- Find the mean (μ)
- Find the square of the distance to the mean for each data point $(\mu-\mathrm{x})$
- Find the sum of those values (Σ)
- Divide that by the number of data points
- Take the square root of that value

Difference in Means:

- Research hypothesis is a difference between the means
- Null hypothesis is no difference between the means
- The null hypothesis is rejected if the difference between the means is bigger or smaller

Steps to Calculate Differences in Means:

- Find the mean for each sample
- Find the variance for each sample
- Find the standard error of the difference between means
- Calculate the t value
- Find the critical value of t using degrees of freedom

$$
\mathrm{t}=\frac{\overline{x_{1}}-\overline{x_{2}}}{s \overline{x_{1}}-\bar{x}_{2}} \quad s \overline{x_{1}}-\bar{x}_{2}=\left(\frac{N_{1} s_{1}^{2}+N_{2} s_{2}^{2}}{N_{1}+N_{2}-2}\right)\left(\frac{N_{1}+N_{2}}{N_{1} N_{2}}\right)
$$

degree of freedom $=N_{1}+N_{2}-2$

